java.co.kr An introduction to ordinary differential equations James C.Robinson solution > java5 | java.co.kr report

An introduction to ordinary differential equations James C.Robinson solution > java5

본문 바로가기

뒤로가기 java5

An introduction to ordinary differential equations James C.Robinson so…

페이지 정보

작성일 19-08-16 20:16

본문




Download : Robinson[1].J.C.Solution.manual.for.An.introduction.to.ordinary.differential.equations.pdf







Download : Robinson[1].J.C.Solution.manual.for.An.introduction.to.ordinary.differential.equations.pdf( 46 )




An introduction to ordinary differential equations 솔루션James C.Robinson저2004년판 , An introduction to ordinary differential equations James C.Robinson 솔루션기타솔루션 , James C Robinson An introduction to ordinary differential equations




James C.Robinson저
2004년판
순서

설명

An introduction to ordinary differential equations James C.Robinson solution

James,C,Robinson,An,introduction,to,ordinary,differential,equations,기타,솔루션


An introduction to ordinary differential equations solution



An Introduction to Ordinary Di?erential Equations Exercises and Solutions
James C. Robinson

1 Radioactive decay and carbon dating

Exercise 1.1 Radioactive isotopes decay at random, with a ?xed probability of decay per unit time. Over a time interval ?t, suppose that the probability of any one isotope decaying is k?t. If there are N isotopes, how many will decay on average over a time interval ?t? Deduce that N (t + ?t) ? N (t) ? ?N k?t, and hence that dN/dt = ?kN is an appropriate model for radioactive decay. Over a time interval ?t, N k?t isotopes will decay. We then have N (t + ?t) ? N (t) = ?N k?t. Dividing by ?t gives N (t + ?t) ? N (t) = ?N k, ?t and letting ?t → 0 we obtain, us…(To be continued )

솔루션/기타

다.
전체 22,981건 1 페이지
해당자료의 저작권은 각 업로더에게 있습니다.

evga.co.kr 은 통신판매중개자이며 통신판매의 당사자가 아닙니다.
따라서 상품·거래정보 및 거래에 대하여 책임을 지지 않습니다.
Copyright © java.co.kr. All rights reserved.
PC 버전으로 보기